Automatic Singular Spectrum Analysis for Time-Series Decomposition
نویسندگان
چکیده
An automatic Singular Spectrum Analysis based methodology is proposed to decompose and reconstruct time-series. We suggest a clustering based procedure to identify the main dynamics of the input signal, by computing a subset of orthogonal basis using a power spectrum criterion. The subset of basis are represented by the Discrete Fourier Transform to infer basis vectors encoding similar data structures. Thus, it is possible to highlight hidden components into the signal. Our approach is tested over some synthetic and real-world datasets, showing that our algorithm is a good tool to decompose time-series.
منابع مشابه
An Automatic Sequential Smoothing Method for Processing Biomechanical Kinematic Signals
The combined application of Singular Spectrum Analysis (SSA) and Cluster Analysis to the automatic smoothing of raw kinematic signals is an alternative to the use of traditional digital filtering and spline based methods. SSA is a non parametric technique that decomposes original time series into a number of additive time series each of which can be easily identified as being part of the noise ...
متن کاملPredicting the Brexit outcome using singular spectrum analysis
In a referendum conducted in the United Kingdom (UK) on June 23, 2016, $51.6\%$ of the participants voted to leave the European Union (EU). The outcome of this referendum had major policy and financial impact for both UK and EU, and was seen as a surprise because the predictions consistently indicate that the ``Remain'''' would get a majority. In this paper, we investigate whether the outcome o...
متن کاملA Time-Frequency approach for EEG signal segmentation
The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...
متن کاملApproximate Projectors in Singular Spectrum Analysis
Singular spectrum analysis (SSA) is a method of time-series analysis based on the singular value decomposition of an associated Hankel matrix. We present an approach to SSA using an effective and numerically stable high-degree polynomial approximation of a spectral projector, which also provides a means of time-series forecasting. Several numerical examples illustrating the algorithm are given.
متن کاملSymplectic geometry spectrum analysis of nonlinear time series
Various time-series decomposition techniques, including wavelet transform, singular spectrum analysis, empirical mode decomposition and independent component analysis, have been developed for nonlinear dynamic system analysis. In this paper, we describe a symplectic geometry spectrum analysis (SGSA) method to decompose a time series into a set of independent additive components. SGSA is perform...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013